나도 일인 AI 스타트업 딥네트워크를 운영중이다 ...  요즘 한국 언론 이나 미국 언론에서도 AI 기술이 핵 미사일에 비교되는 국가 안보와 밀접한 기술이다 라고 언급을 많이 합니다 ...  저희 딥네트워크에서도 LLM 의 파운데이션 모델 설계 기술력 확보를 위해  GPT-3 Model 을 기준으로 파운데이션 모델을 어떤식으로 설계해야 하는지 상세히 세부 구현 원리 및 동작 구조 분석에 성공했읍니다 ...    단지 저희 딥네트워크는 인프라 구축 노하우나  GPT-3 Model 의 데이터셋 확보에 조금 더 노력이 필요 합니다 ...  이건 다 비용이 어마어마 하게 드니까 저희로서도 맘대로 분석까지도 쉽지 않읍니다 ....

 

딥네트워크  CEO  /  장석원   /   010 3350 6509   /   sayhi7@daum.net   

 

OpenAI와 Microsoft가 GPT-3 기반의 LLM 파운데이션 모델 설계에서 마주한 주요 이슈는 모델의 효율성, 데이터 편향, 고비용 컴퓨팅 자원, 그리고 개인정보 보호입니다. 각각의 문제는 LLM 모델을 대규모로 구축하고 운영하는 데 있어 중요한 과제로 자리잡고 있습니다.

  1. 컴퓨팅 자원과 비용
    GPT-3와 같은 대규모 언어 모델은 훈련과 배포에 막대한 컴퓨팅 자원을 필요로 합니다. OpenAI는 GPT-3를 훈련하는 데 수백 개의 고성능 GPU와 대량의 전력이 필요했고, 이로 인해 비용이 크게 증가했습니다. Microsoft는 이러한 문제를 해결하기 위해 Azure 클라우드 인프라를 활용했으며, 여기에는 전용 GPU 클러스터와 최적화된 TPU가 포함됩니다. Microsoft는 인프라를 효율적으로 관리해 모델 훈련 비용을 절감하고 확장성을 높이려 했으나, 고도화된 모델의 경우 여전히 막대한 컴퓨팅 파워와 유지 비용이 드는 문제가 남아 있습니다​​
  2. 데이터 편향 문제
    OpenAI와 Microsoft는 GPT-3 모델이 훈련된 데이터의 편향성을 줄이는 데 어려움을 겪었습니다. GPT-3은 웹에서 수집된 방대한 데이터를 학습하는데, 이 데이터에는 인종, 성별, 정치적 편향 등이 존재합니다. 이로 인해 특정한 편향적 응답이 생성될 가능성이 있으며, 이는 윤리적 문제를 초래할 수 있습니다. OpenAI는 모델의 답변에서 편향을 줄이기 위한 방법으로 데이터 필터링 및 모델 조정을 시도했으나, LLM의 대규모 특성상 완전한 편향 제거가 어렵다는 한계가 있습니다​.
  3. 개인정보와 보안 문제
    LLM의 훈련 데이터에는 사용자 개인 정보가 포함될 가능성이 있습니다. OpenAI와 Microsoft는 모델이 개인정보를 학습하지 않도록 해야 했으나, 대규모 데이터를 사전에 정제하는 과정에서 모든 개인 정보를 완벽히 배제하기는 어렵습니다. 이를 해결하기 위해, OpenAI는 모델의 훈련 데이터 필터링을 강화하고, Microsoft는 Azure에서 추가적인 데이터 보호 조치를 적용해 보안 문제를 최소화하려고 했습니다​.
  4. 모델의 효율성과 추론 시간
    LLM 모델의 경우 크기와 복잡성이 증가함에 따라 실시간 응답 성능이 저하될 수 있습니다. OpenAI와 Microsoft는 GPT-3의 추론 속도를 개선하기 위해 최적화된 아키텍처와 고성능 클러스터링 기법을 도입했으나, 실시간 애플리케이션에서 지연을 최소화하기 위해 추가적인 최적화가 필요했습니다. 이를 해결하기 위해 Microsoft는 Azure 클라우드에서 최적화된 머신러닝 파이프라인을 구축하고, OpenAI는 모델의 파라미터를 부분적으로 조정하는 등의 접근을 시도했습니다​​

이러한 이슈들은 OpenAI와 Microsoft가 GPT-3 기반의 대형 언어 모델을 구축하고 실질적인 서비스에 활용하는 과정에서 기술적, 윤리적 문제를 지속적으로 해결해야 함을 보여줍니다.

 

미국과 한국의 여러 기업들은 GPT-3 모델의 아키텍처를 기반으로 자국의 특성과 요구에 맞게 LLM(대형 언어 모델) 파운데이션 모델을 최적화하며 고유의 기술력을 발전시키고 있습니다. 이들 기업은 기본적으로 GPT-3의 Transformer 아키텍처를 활용하지만, 데이터 처리, 모델 확장, 최적화 방식 등에서 차별화된 전략을 적용하고 있습니다. 다음은 각국 기업들의 기술적 접근법과 개발 전략을 구체적으로 살펴본 내용입니다.

1. 미국의 OpenAI와 Microsoft

OpenAI는 GPT-3 모델의 기반이 된 Transformer 아키텍처를 더욱 발전시키며, 데이터 증강 및 사전 학습을 강화한 GPT-4 모델을 개발했습니다. OpenAI는 보다 정밀한 파인 튜닝 기법을 도입해 모델의 대화와 정보 검색 정확성을 향상시켰습니다. Microsoft는 OpenAI의 파트너로서 GPT-3 및 GPT-4 기술을 자사의 Azure 클라우드 플랫폼에 통합해, 모델을 기업 환경에 맞게 확장할 수 있는 기능을 제공합니다. 이를 통해 OpenAI의 기술을 활용한 GPT-4 기반 애플리케이션들은 자연어 처리 성능을 대폭 강화한 상태로 기업 데이터와 접목할 수 있습니다​

2. 구글의 Gemini 프로젝트

구글은 Transformer 기반의 GPT-3 아키텍처를 개선하여 다중 모달 입력 처리를 지원하는 Gemini 모델을 개발했습니다. 구글은 자체적인 TPU(텐서 처리 유닛)를 활용해 대규모 연산을 지원하고 있으며, 모델의 효율성을 높이기 위해 더욱 정교한 파이프라인 설계를 도입했습니다. Gemini는 구글의 검색 및 정보 제공 시스템에 통합되어, 실시간 데이터 처리 및 컨텍스트 기반 대화 능력을 강화했습니다. 이는 다양한 언어와 분야에 최적화된 응용을 가능하게 하며, 사용자의 요구에 맞는 맞춤형 응답을 제공할 수 있도록 합니다​

3. 한국의 KT와 네이버의 LLM 개발

한국의 KT는 대규모 언어 모델을 개발하여, GPT-3의 아키텍처를 바탕으로 한국어 최적화를 진행하고 있습니다. 특히, KT는 한국어 문서와 데이터를 활용한 훈련을 통해 문서 이해도와 검색 효율성을 높였으며, ‘팩트가드 AI’ 기능을 통해 허위 정보 검출 능력을 강화했습니다. 이를 통해 KT의 LLM은 한국어에 특화된 성능을 제공하고 있으며, B2B 서비스와 공공 분야에서 높은 활용성을 보입니다​

네이버는 HyperCLOVA라는 모델을 통해 GPT-3의 아키텍처를 발전시키는 동시에, 방대한 네이버의 검색 데이터를 활용한 한국어 맞춤형 LLM을 구축했습니다. HyperCLOVA는 한국어뿐 아니라 다국어 데이터를 학습하여 글로벌 시장에서도 경쟁력을 갖춘 모델로 자리매김하고 있습니다. 특히, GPT-3와 달리 한국어에 최적화된 토크나이저를 사용하여 언어 처리 성능을 강화했으며, 이를 네이버의 다양한 서비스에 통합하여 사용자 경험을 개선하고 있습니다​

4. 스타트업 Upstage와 AI 모델 경량화 전략

한국의 스타트업 Upstage는 대규모 LLM의 경량화 및 비용 절감에 초점을 맞춘 모델을 개발하고 있습니다. GPT-3의 구조를 기반으로 하되, 고객사의 특정 요구에 맞춰 경량화한 모델을 제공함으로써 더 낮은 연산 비용과 빠른 응답성을 보장합니다. Upstage의 모델은 한국어와 영어를 비롯한 여러 언어에 최적화되어 있으며, 클라우드 플랫폼을 통해 손쉽게 배포 및 확장이 가능합니다​

이와 같은 방식으로 미국과 한국의 기업들은 GPT-3를 기반으로 하되, 각자의 산업 특성과 시장 요구에 맞춘 기술 개발을 통해 LLM의 성능을 극대화하고 있습니다.

+ Recent posts