투자유치 제안서 :   일인 AI 스타트업 딥네트워크의  LLM(대형 언어 모델) 구조 분석, 어휘 기반 기술을 적용한  RAG 기반 검색 시스템 구현  투자제안서 초안  -   - 자체적으로 생성한 데이터를 활용하거나, 공개적으로 이용 가능한 데이터베이스를 활용하여 RAG 모델을 구축 가능.

1. 회사 개요

  • 회사명: 딥네트워크(Deep Network)  CEO  /  장석원  /   HP  010 3350 6509  /   sayhi7@daum.net   
  • 설립 목적: 최신 AI 및 딥러닝 기술을 통해 보다 강력한 검색 및 언어 모델 솔루션을 제공
  • 주요 기술: LLM(대형 언어 모델) 구조 분석, 어휘 기반 및 딥러닝 기반 검색 알고리즘 최적화, RAG 기반 검색 시스템 구현
  • 주요 목표: 전통적 어휘 기반 검색의 정확성과 딥러닝 기반 검색의 유연성을 결합하여, 사용자 질의에 정확하고 자연스러운 답변을 제공하는 혁신적인 검색 및 추론 시스템을 개발

2. 프로젝트 배경

최근 대형 언어 모델은 다양한 언어와 지식에 대해 강력한 이해 및 생성 능력을 보이고 있으나, 기존의 언어 모델이 단순히 사전 학습된 데이터에 기반하여 생성하는 방식에서는 최신 정보나 상세한 문맥을 즉각 반영하기 어려운 한계가 있습니다. 딥네트워크는 이 점을 보완하기 위해 RAG(Retrieval-Augmented Generation) 구조를 도입하여 검색 기반 정보 추출과 LLM의 자연어 생성 기능을 결합함으로써 더욱 정교하고 정확한 검색 및 응답 시스템을 구축하고자 합니다.

 

3. 기술적 분석 및 차별점

  • 어휘 기반 검색: 높은 정밀도를 유지하며 특정 키워드나 텍스트 패턴에 기반한 빠르고 효율적인 검색 기능을 제공
  • 딥러닝 기반 검색: 다양한 언어 및 표현 패턴을 학습해 유연하고 확장성이 뛰어난 검색 결과를 제공
  • RAG 구조 통합: RAG 모델은 검색 프로세스에서 유의미한 정보를 실시간으로 추출한 후, 이를 LLM에 통합해 사용자 질의에 맞는 정교한 답변을 생성
  • GPT-3.5 기반 LLM 성능 향상: 대형 언어 모델을 활용한 추론을 통해 더욱 자연스럽고 높은 이해력을 가진 답변을 제공하며, 검색과 생성 기능의 유기적인 결합으로 정보 전달 능력을 극대화

4. 세부 기술 구현

딥네트워크의 검색 시스템은 다음과 같은 단계로 구성됩니다:

  • 1) 전처리 단계:
    • 사용자 질의를 어휘 기반 분석과 딥러닝 기반 분석을 통해 두 가지 방식으로 사전 처리
    • 질의 내 주요 키워드와 관련된 문맥을 분석하여 검색에 적합한 텍스트를 식별
  • 2) 검색 및 정보 추출 단계:
    • 어휘 기반 검색 엔진은 높은 정밀도를 목표로 빠르게 관련 문서나 정보를 검색
    • 딥러닝 기반 검색 엔진은 질의와 유사한 문맥과 주제를 가진 다양한 표현을 포함한 정보까지 포괄하여 검색
    • 두 방식의 검색 결과를 결합하여 LLM의 입력 데이터로 최적화된 형태로 가공
  • 3) RAG 기반 생성 및 최적화 단계:
    • RAG 구조를 통해 검색된 정보와 LLM을 결합, 관련된 지식과 문맥을 모델 입력에 통합
    • GPT-3.5를 활용하여 사용자 질의에 최적화된 답변을 생성하며, 질의의 맥락에 맞는 정확한 응답을 제공
  • 4) 학습 및 피드백 루프:
    • RAG와 LLM의 조합으로 생성된 답변의 품질을 지속적으로 평가하고, 피드백을 통해 검색 및 생성 모델을 정교화
    • 사용자 피드백을 바탕으로 모델을 재학습하여 질의 응답의 정확성을 높이고 학습 효율성을 극대화

5. RAG 기반 LLM의 장점

  • 문맥 인식 능력 강화: 검색된 정보가 질의에 맞게 조정되어 답변의 문맥 적합성을 높임
  • 정확도 및 속도 향상: 필요한 정보를 즉각 검색하고, 그 결과를 기반으로 생성하므로 답변의 정확성과 처리 속도가 높음
  • 지속적 업데이트 가능: 최신 정보로 검색 결과를 반영함으로써 지식의 갱신 주기를 빠르게 유지

6. 기술적 구현 계획

  • 단계 1: 어휘 기반 검색 엔진 개발 및 최적화
  • 단계 2: 딥러닝 기반 검색 엔진 개발 및 통합, 전처리 알고리즘 적용
  • 단계 3: RAG 구조와 GPT-3.5 통합을 통한 검색-생성 모델 구축
  • 단계 4: 사용자 피드백 기반의 학습 및 최적화 알고리즘 개발
  • 단계 5: 성능 평가 및 상용화를 위한 피드백 루프 구축

7. 상용화 계획

딥네트워크는 검색 및 생성 능력을 결합한 모델을 상용화하여 다양한 산업의 검색 수요를 충족하고자 합니다. 특히 비즈니스 인텔리전스, 금융, 헬스케어 등 데이터의 정확성과 실시간성이 중요한 분야에서의 활용 가능성이 높습니다. 상용화 단계에서는 기업과의 제휴 및 클라우드 기반의 서비스로 확장하여 다양한 API 및 플랫폼과의 연동을 고려합니다.

8. 투자 필요성

본 프로젝트의 성공적인 수행을 위해서는 다음의 투자 및 지원이 필요합니다:

  • AI 연구개발 인프라 확충: 고성능 GPU 클러스터, 데이터 관리 시스템 등
  • 전문 인력 채용: 검색 시스템 개발, LLM 최적화 및 RAG 모델 구현에 필요한 전문가 확보
  • 상용화 및 마케팅 비용: 초기 사용자를 확보하고, 기업 고객 대상의 마케팅 진행
  • 지속적 모델 업데이트: 사용자 피드백을 반영하여 지속적인 모델 학습 및 개선이 가능한 인프라 구축

9. 기대 효과

  • 정확한 정보 제공: 고도화된 검색 시스템으로 질의에 맞는 정확한 정보 제공
  • 실시간 반응성: 최신 정보를 실시간으로 반영할 수 있는 검색-생성 모델 구현
  • 비즈니스 적용성 강화: 다양한 산업 분야에서 활용 가능한 다목적 검색 및 생성 모델 개발

10. 결론

딥네트워크의 RAG 기반 검색 시스템은 검색의 정확성과 유연성을 동시에 제공하며, LLM의 성능을 최대한 활용할 수 있는 강력한 솔루션입니다. 이 솔루션은 비즈니스 인텔리전스, 금융, 의료 등 고도화된 검색과 정확한 정보를 요구하는 분야에서 경쟁력 있는 서비스를 제공할 수 있는 잠재력을 가지고 있습니다. 딥네트워크는 투자 유치를 통해 상용화를 목표로 하며, 향후 AI 시장에서의 강력한 성장을 기대합니다.

 

 

 

메타(FaceBook)가 RAG (Retrieval-Augmented Generation) 모델을 통해 AI 검색 기능을 사업화하려는 경우, 20년 전 웹 브라우저 검색 엔진의 원천 기술을 반드시 확보해야 하는 것은 아닙니다. RAG 모델은 현대적인 자연어 처리 및 기계 학습 알고리즘을 활용하여, 전통적인 검색 엔진과는 다른 방식으로 정보를 수집하고 제공하기 때문입니다.

 

1. RAG 모델과 전통적인 검색 엔진의 차이점

  • RAG 모델은 사용자가 입력한 질문에 대한 관련 문서나 데이터베이스에서 정보를 추출한 후, 이를 기반으로 언어 모델이 답변을 생성하는 구조입니다. 전통적인 검색 엔진처럼 키워드 기반의 검색 결과를 반환하기보다는, 사용자에게 자연스러운 응답을 제공합니다.
  • 기존 검색 엔진 기술은 주로 웹 페이지의 키워드를 색인하고, 사용자가 입력한 키워드와 일치하는 페이지를 랭킹 알고리즘을 통해 반환합니다.

2. 메타의 검색 기능 사업화와 원천 기술 필요성

  • 메타가 AI 검색 서비스를 사업화하는 데 있어 중요한 요소는 최신 RAG 기술의 성능과 사용자 요구를 충족할 수 있는가에 있습니다. 웹 검색 엔진의 초기 기술과는 달리, 메타는 현대적인 자연어 처리 기술과 대규모 데이터를 활용하여 필요한 정보를 수집하고, 이를 통해 검색 기능을 강화할 수 있습니다.
  • 특히 메타는 자체적으로 생성한 데이터를 활용하거나, 공개적으로 이용 가능한 데이터베이스를 활용하여 RAG 모델을 구축할 수 있습니다. 

3. RAG 모델의 장점과 확장 가능성

 
  • RAG 모델은 대규모 데이터에 접근할 수 있다면, 웹과 상관없이 다양한 출처에서 정보를 검색하고 결과를 생성할 수 있습니다. 따라서 메타(FaceBook)는 RAG 모델을 사용해 검색 서비스를 제공하면서도 전통적인 웹 검색 엔진 기술에 의존하지 않고, 자체 데이터를 통해 차별화된 검색 서비스를 제공할 수 있습니다.

결론적으로, 메타가 AI 검색 기능을 사업화하는 데 있어서 전통적인 웹 브라우저 검색 엔진의 원천 기술을 확보해야 하는 것은 필수적이지 않습니다.

 

+ Recent posts